Tu Viện Quảng Đức105 Lynch Rd, Fawkner, Vic 3060. Australia. Tel: 9357 3544. [email protected]* Viện Chủ: HT Tâm Phương, Trụ Trì: TT Nguyên Tạng   

Tản mạn về số Không

11/07/201021:53(Xem: 10884)
Tản mạn về số Không
phat_2 (11)
Có nhiều bài báo, nhiều công trình khảo cứu công phu viết về con số 0 cả từ thế kỷ trước sang đến thế kỷ này. Quả tình, đó là con số kì diệu. Có những câu hỏi tưởng chừng ngớ ngẩn, chẳng hạn, “số không có phải là con số?”, nhưng đó lại là câu hỏi gây nên những trả lời dị biệt, và ở mỗi khuynh hướng tiếp cận khác nhau, những câu trả lời khẳng hoặc phủ định đều có những hợp lý riêng của chúng. Thế nhưng, hầu như ngoài những nhà toán học thì chẳng mấy ai quan tâm đến con số không; có thể nói người ta đã không cần đến nó từ các nhu cầu bình nhật như cân đo đong đếm. 
 
Điều đó cũng tương tự như trường hợp “Tánh Không” của hiện hữu, là khái niệm khó lòng chấp nhận được đối với đại đa số, khi mà phần lớn những tầm cầu khảo sát làm nên văn minh nhân loại đã dựa vào cái có của hiện tượng. Ngay cả người Hy Lạp cổ xưa, nơi xuất phát nền văn minh phương Tây, họ vẫn không có khái niệm “số không”, mặc dù họ rất cần có một con số để chỉ sự vắng mặt của một số vật thể, hay đồ dùng nào đó.

Những khảo cứu gần đây đã chứng tỏ rằng ý niệm về số không (để diễn tả cái “không” hiện hữu) đã xuất hiện từ khá lâu trước Tây lịch, từ Ai Cập, hay từ Trung Quốc; tuy nhiên, rõ ràng nhất, là sự xuất hiện của số không với kí hiệu tròn (0) từ Ấn Độ, trong công trình của nhà toán học Ấn Độ Brahmagupta, vào năm 628 (Brahmasputha Siddhanta – Sự Khơi Mở Vũ Trụ). Còn trước đó, người ta vẫn không thể xác nhận số 0 trong nền toán học Ấn Độ xuất hiện tự khi nào, mặc dù những xác chứng của ngành khảo cổ học đã cho thấy rằng từ năm 256 trước Tây lịch, số 0 và hệ thống số thập phân đã xuất hiện trên các văn bản bằng đá thời A-dục.

Từ Śūnyam xuất hiện trong các văn bản và trong toán học Ấn Độ khá lâu trước khi ngài Long Thọ (Nāgārjuna) nêu lên thuật ngữ Śūnyatā (Tánh Không) trong luận thuyết của mình. Tùy theo lúc, Śūnyam thường được dịch sang tiếng Anh bằng các từ như Void, Vacant, Empty mà ta có thể hiểu với hai nghĩa thông thường trong Việt ngữ là “giá trị bằng không”, hoặc “không có gì”.

Từ Śūnyam đến Śūnyatā (Tánh Không), người ta đã đi qua một lộ trình dằng dặc từ chỗ nghi ngờ sự hiện hữu đến khẳng định sự tồn tại của “không”, và từ đó, mở ra những chân trời bao la của ý niệm, những chân trời chỉ có thể tiếp cận theo nhiều hướng khác nhau, nhưng không thể một lần nói hết. Ngày nay, Tánh Không luận đã nghiễm nhiên trở thành một luận thuyết đẹp và sâu đến nỗi những trí tuệ siêu việt luôn bị hấp dẫn và họ ngày càng khám phá ra biết bao huyền nhiệm trong mối tương ưng giữa luận thuyết và chiều sâu tâm hồn của những trí tuệ đó, cái chiều sâu không thể định danh, và sâu đến nỗi bất khả diễn bày. 
 
Cũng hoàn toàn tương tự như vậy, từ chỗ không có số 0, bất cần đến nó, nền văn minh Hy-La đã thực sự bị cuốn hút bởi số 0 đến từ phương Đông. Số 0 đó đã tồn tại theo nhiều kí dạng khác nhau, nhưng trải qua nhiều nghiên cứu, nó đã kết hợp với 9 chữ số từ 1 đến 9 để tạo ra một vũ trụ toán học muôn màu. Ngày nay, số 0, hoặc cái không có gì, lại không thể thiếu được cả trong Toán học thuần túy (Pure Mathematics) lẫn trong toán học ứng dụng (Applied Mathematics). Sau khi bị chinh phục bởi hệ thống số của người phương Đông, các nhà toán học phương Tây đã có đủ phương tiện để trí tưởng tượng bay bổng, các công trình lần lượt ra đời như vũ bão.

Trong tác phẩm Brahmasputha Siddhanta đã nói trên, Brahmagupta đã chỉ ra được một số tính chất đẹp mang tính cơ sở của số 0, ngoại trừ tính chất “0 chia 0 bằng 0”, là tính chất mà toán học hiện đại không đồng ý, bởi vì, “0 chia 0 thì không được xác định”. Cho đến nay, ta biết rằng, nhờ số 0, ta định nghĩa được các số nguyên âm, và từ đó, dẫn đến các tập hữu tỉ, thực, phức, nghĩa là toàn bộ các tập hợp số. 
 
Số 0 và vô tận trở thành hai khái niệm đối ngẫu, trên cơ sở, một số hữu hạn chia cho một đại lượng tiến dần đến 0 thì trở thành đại lượng tiến dần ra vô tận (âm hoặc dương).Trong một cách tiếp cận luận thuyết Tánh Không, ta biết rằng, cái không có gì lại hàm chứa cả vô biên. Quả táo rơi ư? Bằng quá nhiều nguyên nhân, mà quả táo tựu thành, bởi có những hoa táo không thành trái ngọt do không thụ phấn, hoặc bởi một cơn trở trời bất thuận, nó đành phải bay vào hư không rồi tan thành từng mảnh nhỏ, chẳng để lại dấu vết gì. Nhưng bởi sự ngẫu hợp của nhiều tác nhân, quả táo đã hình thành. 
 
Từng quả táo đã đi vào đời sống này theo nhiều thể điệu dâng tặng khác nhau, hoặc là món quà làm đẹp trong phòng khách, hoặc trở thành dưỡng chất của loài người, hoặc biến thành thứ rượu ngọt trần gian với khả năng dẫn đến chiến tranh, sáng tạo hoặc tình huynh đệ. Rồi một ngày kia, quả táo xuất hiện trong cái nhìn đăm đăm sâu thẳm của nhà bác học Newton. Cũng chỉ là những quả táo thôi, nhưng bằng chiêm nghiệm lặp đi lặp lại của nhà bác học, quả táo lại trở thành tác nhân khơi mở một thế giới tràn trề. Ấy là, định luật về trọng trường ra đời, đặt cơ sở cho những thành tựu khoa học vĩ đại mà nhân loại phải mang ơn.

Số 0, cái không tồn tại, đem chia cho 0, nghĩa là chia đều cho cái không có gì, thì trở thành cái bất khả tri (không xác định). Tuy nhiên, khi các định nghĩa và tính chất của Giới hạn trong Giải tích học phát triển (vào thế kỉ 18), thì cái không chia không kia tùy nơi, tùy lúc mà trở thành một giá trị hữu hạn nào đó, hoặc thậm chí, là giá trị vô hạn. Hoàn toàn có lý do khi Ankur Barua, trong một tiểu luận nhan đề “Applied Buddhism in Modern Mathematics – Phật giáo ứng dụng trong toán học hiện đại” –, sau khi tham khảo một số sách về lịch sử Toán học, đã viết: “Tánh Không luận của Nāgārjuna đã mở đường cho sự phát triển những khái niệm “không” và “vô hạn” trong toán học hiện đại”.

Số 0 trong toán học, ngay ký dạng tròn của nó đã thể hiện sự tròn đầy, trong toán học, nó kết hợp với 9 chữ số kia để tạo thành hệ thống số biểu diễn tất cả các số từ tự nhiên đến hữu tỉ, nó kết hợp với chữ số 1 để mã hóa tất cả các con số và câu lệnh trong máy tính, cùng với các quy luật của hệ nhị phân, tạo nên một thời kỳ sáng chói của liên lạc viễn thông, của khoa học vũ trụ, … Nó là căn bản, mang tính trung gian, mà nếu không có nó, các định nghĩa cho những tập hợp chứa tập hợp số nguyên dương sẽ không tựu thành. Không nhà toán học nào lại có thể tưởng tượng được trong toán học ngày nay lại thiếu vắng số 0, hoặc tập rỗng.

“Nên hiểu không là nhân Tạo thành nhất thiết pháp. Còn phủ nhận tánh Không, Là phủ nhận các pháp.” Từ không, lại có thể xây dựng lại cái có. Cái rỗng không là tự tính, nhưng nó được xây dựng thành cái có chính bởi sự tương quan cùng những cái không khác. Tập rỗng, là tập hợp không chứa phần tử nào cả, nhưng lại có thể xây dựng nên cơ sở của lí thuyết tập hợp. 
 
Để xây dựng lại tập hợp các số tự nhiên từ tập hợp rỗng, vào năm 1923, nhà toán học John von Neumann đã đề nghị một phương pháp sau đây: Bản số (cardinality) của một tập hợp là số phần tử của tập hợp đó. Một tập hợp có thể có bản số bằng 0, bản số hữu hạn hoặc vô hạn đếm được hoặc vô hạn không đếm được. Theo John von Neumann, các con số, mà bản thân chúng được nhiều nhà khoa học nhìn nhận là ý niệm phi vật lý, được xây dựng lại một cách đệ quy như sau:

Số 0: Ø (tập rỗng);

Số 1: { Ø } (tập hợp chứa tập rỗng – bước xây dựng 1);

Số 2: { Ø, { Ø } } (tập hợp chứa 2 tập trước – bước xây dựng 2);

Số 3: { Ø, { Ø }, { Ø, { Ø }}} (tập hợp chứa 3 tập trước – bước xây dựng 3);

Số 4: { Ø, { Ø }, { Ø, { Ø } }, { Ø, { Ø }, { Ø, { Ø } } } } (tập hợp chứa 4 tập trước – bước xây dựng 4);…

Quá trình này được lặp lại mãi mãi. Dãy này được xây dựng làm sinh ra các tập hợp có bản số là 0, 1, 2, 3, 4, v. v…. Nếu nói theo ngôn ngữ không toán học, có thể nói: Ta bắt đầu bằng sự trống rỗng, và tư duy về sự rỗng không đó. Hãy nghĩ đến cái có thể chứa trọn vẹn sự trống rỗng đó (bước 1). Và rồi, ta kết hợp giữa sự rỗng không với cái chứa sự rỗng không (bước 2), và cứ tiếp tục như thế. Rõ ràng là, chính sự quán tưởng đã làm nảy sinh ý niệm (tức là toán tử) tác động lên cái được quán tưởng.

Về mặt toán học, dãy được xây dựng đệ quy như trên đẳng cấu với tập hợp số tự nhiên đã được thừa nhận trước đó. Sự xây dựng đó còn đi xa hơn để tạo nên các cấu trúc toán học tưởng chừng như vắng mặt cả những con số – điều mà một người bình thường không tin nổi. Quả vậy, toán học hiện đại đã xây dựng những cấu trúc, những không gian tổng quát (tất nhiên, những không gian cũ mà học sinh trung học phổ thông được dạy phải là trường hợp riêng của những không gian này), đến nỗi, nhiều nhà phân tích triết học về toán học (Philosophy of Mathematics) đã gọi nó là “Toán học không con số”, chẳng hạn, Geoffrey Hellman với tác phẩm rất hay nhan đề “Mathematics without Numbers”(Oxford University Press, 1994).

Vấn đề trên của toán học cũng gợi cho ta nhớ lại rằng, mặc dù Śūnyam xuất hiện từ trước Tây lịch khá lâu tại Ấn Độ, nhưng chính Nāgārjuna đã phát triển và biến nó thành phong phú trong khái niệm Śūnyatā, ở đó, các yếu lí lời dạy của Đức Phật được diễn bày, mà nếu hiểu được thâm lý của nó ở một mức độ tương đối khá, nhà nghiên cứu sẽ thấy được bản chất của hiện hữu, trong khoa học, và trong đời sống.

Để kết thúc những tản mạn này trong mối liên hệ giữa số không và Śūnyatā, tôi xin mượn lời của thầy Tuệ Sỹ: “Một câu hỏi được đặt ra tất có mục đích muốn mở ra một chân trời mới cho tư tưởng. Tuy nhiên, bất cứ câu hỏi nào, như Long Thụ đã nói, nếu không được thiết lập trên thuyết tánh Không, thì nó đã đóng khung sẵn cho câu trả lời, và như thế, câu trả lời thực sự không trả lời gì cả”. 

Chú thích:
Algebra with Arithmetic of Brahmagupta and Bhaskara, bản dịch Anh ngữ của Henry Thomas Colebrooke, London,
Srinivasiengar, N. The History of Ancient   Indian Mathematics, Calcutta, World Press Private Ltd, 1967.

Long Thọ. Mūlamadhyamaka-kārikā (Căn Bản Trung Quán Luận Tụng, đoạn 14, phầm 24, Quán Tứ Thánh Đế), Sonam Nyima Chân Giác, Diệu Hạnh Giao Trinh dịch từ bản Anh ngữ của Wulstan Fletcher, có tham khảo từ ngữ dùng trong bản Hán dịch.

John von Neumann (1903 –1957), nhà Toán học sống tại Mỹ, gốc Do Thái sinh tại Hungary.

Tuệ Sỹ. Triết học về Tánh Không, Chương 3, An Tiêm,

Tạp Chí Văn Hóa Phật Giáo số 161
 
Gửi ý kiến của bạn
Tắt
Telex
VNI
Tên của bạn
Email của bạn
24/04/2016(Xem: 35853)
Qua mạng Amazon.com, tôi đặt mua cuốn sách tiếng Anh “In The Buddha’s Words” của Bhikkhu Bodhi ngay sau khi xuất bản năm 2005. Đọc sơ qua phần đầu rồi để đó. Mỗi lần đi đâu, tôi mang theo để đọc từ từ vài trang, trong lúc chờ đợi, trước khi đi ngủ. Cứ thế dần dần qua năm tháng. Rồi cũng không thẩm thấu được bao nhiêu.
29/02/2016(Xem: 10950)
Khi trình bày tổng quát về Phật pháp theo cách tu tập của người Tây Tạng, tôi thường chỉ rõ rằng đạo Phật áp dụng ở Tây Tạng là một hình thức kết hợp các giáo lý thuộc Tiểu thừa, Bồ Tát thừa và Mật thừa, bao gồm cả những pháp môn như là Đại Thủ Ấn. Vì có khá nhiều người [hiện diện ở đây] đã nhận lễ quán đảnh và thọ học giáo pháp v.v... nên việc giảng giải về một cấu trúc hoàn chỉnh [của Phật giáo Tây Tạng] có thể sẽ hữu ích.
28/02/2016(Xem: 8174)
Một thuyết giảng ở Luân Đôn, Anh quốc, 1988. Được chuyển dịch sang Anh ngữ bởi Geshe Thupten Jinpa và hiệu đính bởi Jeremy Russell. Được xuất bản lần đầu tiên trong Cho-Yang (No.5), là một tạp chí được phát hành bởi Bộ Tôn Giáo và Văn Hóa thuộc chính quyền Trung Ương Tây Tạng ở Dharamsala. Copyright His Holliness the Dalai Lama 14 (Bản quyền thuộc về Thánh đức Dalai Lama thứ 14) Quyền cho phép phổ biến Việt ngữ miễn phí với sự chuẩn thuận của ngài Rajiv Mehrotra, đại diện Foundation For Universal Responsibility of HH The Dalai Lama (www.furhhdl.org)
11/02/2016(Xem: 9773)
Nguyên văn đoạn kinh trong phẩm Phật-đà, Tương ưng bộ, như sau: “Này các Tỳ-kheo, thế nào là lý duyên khởi? Này các Tỳ-kheo, vô minh duyên hành; hành duyên thức; thức duyên danh sắc; danh sắc duyên sáu xứ; sáu xứ duyên xúc; xúc duyên thọ; thọ duyên ái; ái duyên thủ; thủ duyên hữu; hữu duyên sanh; sanh duyên già chết, sầu, bi, khổ, ưu, não được khởi lên. Như vậy là toàn bộ khổ uẩn này tập khởi”.
11/02/2016(Xem: 4962)
Bài viết này sẽ trình bày rằng Thiền Tông là pháp môn nguyên thủy và cốt tủy do Đức Phật dạy. Nói nguyên thủy, vì Thiền Tông chính từ lời Đức Phật dạy. Nói cốt tủy, vì nhiều cách an tâm trong Thiền Tông là từ các kinh, khi chư tăng cao niên xin dạy pháp ngắn gọn để sẽ lui về một góc rừng ngồi trọn đời cho tới khi giải thoát. Bài viết này sẽ sắp xếp các lý luận sao cho thực dụng, có lợi cho tất cả những người quan tâm và muốn bước vào Thiền Tông. Tính thực dụng trong cách an tâm sẽ trình bày cụ thể, trong mức có thể được. Bản thân người viết tự xét sở học bất toàn, nên sẽ tránh ý riêng tối đa, để chủ yếu dựa vào các kinh Pali phổ biến, có sẵn với các bản Anh văn trên mạng.
24/12/2015(Xem: 4964)
Mỗi người khi sinh ra cũng chỉ với hai bàn tay trắng, rồi tùy theo phước báo và nghiệp lực gieo tạo, mà được trưởng thành trong ấm êm, đầy đủ, vinh danh, hay kiêu mạn, mặc sức thụ hưởng, hoang phí, làm việc thất đức để phải chịu cảnh bần cùng, đọa đày, khổ cực. “Tất cà chúng sanh đều có Phật tánh” kia mà ? Ai ràng buộc chúng ta mà phải cần giải thoát ? tất cả cũng đều do ta gieo tạo, rồi tự thọ nhận lấy quả báo mà thôi! Đời là khổ và con người vì “chấp ngã” tự ràng buộc mình
23/12/2015(Xem: 10242)
Phước báu hay phước đức là quan niệm đặc thù của Đông Phương. Đối với Tây Phương thì chỉ có gia tài, sự nghiệp, di sản để lại cho con cháu chứ không có chuyện phước báu hay phước đức. Quan niệm “phước báu hay phước đức” đã trở thành gần như đời sống tâm linh, gắn chặt với lối suy nghĩ và cuộc sống của con người Việt Nam và Trung Hoa. Người Việt Nam ta ai cũng mong cầu phước đức, lo vun trồng phước đức và rất sợ vô phúc.
19/12/2015(Xem: 5581)
Tâm giác ngộ là lẽ thật thiết yếu, phổ quát. Tư tưởng thuần khiết nhất này là nguyện ước và ý chí đưa tất cả chúng sanh đến sự thực chứng năng lực Giác Ngộ vô thượng. Bồ tát thấy tính bản nhiên như pha lê này hiện hữu trong tất cả chúng ta, và bằng việc nhận ra sự tuyệt đẹp của năng lực con người chúng ta, đã luôn luôn có sự tôn trọng.
29/11/2015(Xem: 5204)
Các thanh niên dòng Da Xá trông thấy tướng hảo giải thoát của các vị Thánh này, nên đã phát tâm xuất gia. Cha mẹ và vợ con của các thanh niên Da Xá tìm đến Lộc Uyển thấy hào quang của Đức Phật và đại chúng trang nghiêm cũng phát tâm quy y Tam bảo. Từ đó, Phật giáo có mặt ở Ấn Độ và trải qua suốt thời gian dài hơn 2500 năm, Phật giáo đã được truyền bá từ nước này sang nước khác, có lúc thạnh, lúc suy. Tìm hiểu nguyên nhân nào làm Phật pháp hưng thạnh, hay suy đồi, để chúng ta giữ gìn và phát triển được đạo pháp.
28/11/2015(Xem: 5897)
“Nếu có Tỳ-kheo nào không tàm không quý thì làm tổn hại ái và kỉnh. Nếu không có ái và kỉnh thì làm tổn hại tín. Nếu không có tín thì làm tổn hại chánh tư duy. Nếu không có chánh tư duy thì làm tổn hại chánh niệm chánh trí. Nếu không có chánh niệm chánh trí thì làm tổn hại gìn giữ các căn, giữ giới, không hối hận, hân hoan, hỷ, tĩnh chỉ, lạc, định, tri kiến như thật, yếm ly, vô dục, giải thoát. Nếu không giải thoát thì làm tổn hại Niết-bàn. “Nếu Tỳ-kheo nào biết hổ thẹn thì có ái và kỉnh. Nếu có ái và kỉnh thì thường có tín. Nếu có tín thì thường có chánh tư duy. Nếu có chánh tư duy thì thường có chánh niệm chánh trí. Nếu có chánh niệm chánh trí thì thường giữ các căn, giữ giới, không hối hận, hân hoan, hỷ, tĩnh chỉ, lạc, định, tri kiến như thật, yếm ly, vô dục, giải thoát. Nếu giải thoát thì liền được Niết-bàn.
facebook youtube google-plus linkedin twitter blog
Nguyện đem công đức này, trang nghiêm Phật Tịnh Độ, trên đền bốn ơn nặng, dưới cứu khổ ba đường,
nếu có người thấy nghe, đều phát lòng Bồ Đề, hết một báo thân này, sinh qua cõi Cực Lạc.

May the Merit and virtue,accrued from this work, adorn the Buddhas pureland,
Repay the four great kindnesses above, andrelieve the suffering of those on the three paths below,
may those who see or hear of these efforts generates Bodhi Mind, spend their lives devoted to the Buddha Dharma,
the Land of Ultimate Bliss.

Quang Duc Buddhist Welfare Association of Victoria
Tu Viện Quảng Đức | Quang Duc Monastery
Most Venerable Thich Tam Phuong | Senior Venerable Thich Nguyen Tang
Address: Quang Duc Monastery, 105 Lynch Road, Fawkner, Vic.3060 Australia
Tel: 61.03.9357 3544 ; Fax: 61.03.9357 3600
Website: http://www.quangduc.com
http://www.tuvienquangduc.com.au (old)
Xin gửi Xin gửi bài mới và ý kiến đóng góp đến Ban Biên Tập qua địa chỉ:
[email protected]