Tu Viện Quảng Đức105 Lynch Rd, Fawkner, Vic 3060. Australia. Tel: 9357 3544. [email protected]* Viện Chủ: HT Tâm Phương, Trụ Trì: TT Nguyên Tạng   

Tản mạn về số Không

11/07/201021:53(Xem: 10804)
Tản mạn về số Không
phat_2 (11)
Có nhiều bài báo, nhiều công trình khảo cứu công phu viết về con số 0 cả từ thế kỷ trước sang đến thế kỷ này. Quả tình, đó là con số kì diệu. Có những câu hỏi tưởng chừng ngớ ngẩn, chẳng hạn, “số không có phải là con số?”, nhưng đó lại là câu hỏi gây nên những trả lời dị biệt, và ở mỗi khuynh hướng tiếp cận khác nhau, những câu trả lời khẳng hoặc phủ định đều có những hợp lý riêng của chúng. Thế nhưng, hầu như ngoài những nhà toán học thì chẳng mấy ai quan tâm đến con số không; có thể nói người ta đã không cần đến nó từ các nhu cầu bình nhật như cân đo đong đếm. 
 
Điều đó cũng tương tự như trường hợp “Tánh Không” của hiện hữu, là khái niệm khó lòng chấp nhận được đối với đại đa số, khi mà phần lớn những tầm cầu khảo sát làm nên văn minh nhân loại đã dựa vào cái có của hiện tượng. Ngay cả người Hy Lạp cổ xưa, nơi xuất phát nền văn minh phương Tây, họ vẫn không có khái niệm “số không”, mặc dù họ rất cần có một con số để chỉ sự vắng mặt của một số vật thể, hay đồ dùng nào đó.

Những khảo cứu gần đây đã chứng tỏ rằng ý niệm về số không (để diễn tả cái “không” hiện hữu) đã xuất hiện từ khá lâu trước Tây lịch, từ Ai Cập, hay từ Trung Quốc; tuy nhiên, rõ ràng nhất, là sự xuất hiện của số không với kí hiệu tròn (0) từ Ấn Độ, trong công trình của nhà toán học Ấn Độ Brahmagupta, vào năm 628 (Brahmasputha Siddhanta – Sự Khơi Mở Vũ Trụ). Còn trước đó, người ta vẫn không thể xác nhận số 0 trong nền toán học Ấn Độ xuất hiện tự khi nào, mặc dù những xác chứng của ngành khảo cổ học đã cho thấy rằng từ năm 256 trước Tây lịch, số 0 và hệ thống số thập phân đã xuất hiện trên các văn bản bằng đá thời A-dục.

Từ Śūnyam xuất hiện trong các văn bản và trong toán học Ấn Độ khá lâu trước khi ngài Long Thọ (Nāgārjuna) nêu lên thuật ngữ Śūnyatā (Tánh Không) trong luận thuyết của mình. Tùy theo lúc, Śūnyam thường được dịch sang tiếng Anh bằng các từ như Void, Vacant, Empty mà ta có thể hiểu với hai nghĩa thông thường trong Việt ngữ là “giá trị bằng không”, hoặc “không có gì”.

Từ Śūnyam đến Śūnyatā (Tánh Không), người ta đã đi qua một lộ trình dằng dặc từ chỗ nghi ngờ sự hiện hữu đến khẳng định sự tồn tại của “không”, và từ đó, mở ra những chân trời bao la của ý niệm, những chân trời chỉ có thể tiếp cận theo nhiều hướng khác nhau, nhưng không thể một lần nói hết. Ngày nay, Tánh Không luận đã nghiễm nhiên trở thành một luận thuyết đẹp và sâu đến nỗi những trí tuệ siêu việt luôn bị hấp dẫn và họ ngày càng khám phá ra biết bao huyền nhiệm trong mối tương ưng giữa luận thuyết và chiều sâu tâm hồn của những trí tuệ đó, cái chiều sâu không thể định danh, và sâu đến nỗi bất khả diễn bày. 
 
Cũng hoàn toàn tương tự như vậy, từ chỗ không có số 0, bất cần đến nó, nền văn minh Hy-La đã thực sự bị cuốn hút bởi số 0 đến từ phương Đông. Số 0 đó đã tồn tại theo nhiều kí dạng khác nhau, nhưng trải qua nhiều nghiên cứu, nó đã kết hợp với 9 chữ số từ 1 đến 9 để tạo ra một vũ trụ toán học muôn màu. Ngày nay, số 0, hoặc cái không có gì, lại không thể thiếu được cả trong Toán học thuần túy (Pure Mathematics) lẫn trong toán học ứng dụng (Applied Mathematics). Sau khi bị chinh phục bởi hệ thống số của người phương Đông, các nhà toán học phương Tây đã có đủ phương tiện để trí tưởng tượng bay bổng, các công trình lần lượt ra đời như vũ bão.

Trong tác phẩm Brahmasputha Siddhanta đã nói trên, Brahmagupta đã chỉ ra được một số tính chất đẹp mang tính cơ sở của số 0, ngoại trừ tính chất “0 chia 0 bằng 0”, là tính chất mà toán học hiện đại không đồng ý, bởi vì, “0 chia 0 thì không được xác định”. Cho đến nay, ta biết rằng, nhờ số 0, ta định nghĩa được các số nguyên âm, và từ đó, dẫn đến các tập hữu tỉ, thực, phức, nghĩa là toàn bộ các tập hợp số. 
 
Số 0 và vô tận trở thành hai khái niệm đối ngẫu, trên cơ sở, một số hữu hạn chia cho một đại lượng tiến dần đến 0 thì trở thành đại lượng tiến dần ra vô tận (âm hoặc dương).Trong một cách tiếp cận luận thuyết Tánh Không, ta biết rằng, cái không có gì lại hàm chứa cả vô biên. Quả táo rơi ư? Bằng quá nhiều nguyên nhân, mà quả táo tựu thành, bởi có những hoa táo không thành trái ngọt do không thụ phấn, hoặc bởi một cơn trở trời bất thuận, nó đành phải bay vào hư không rồi tan thành từng mảnh nhỏ, chẳng để lại dấu vết gì. Nhưng bởi sự ngẫu hợp của nhiều tác nhân, quả táo đã hình thành. 
 
Từng quả táo đã đi vào đời sống này theo nhiều thể điệu dâng tặng khác nhau, hoặc là món quà làm đẹp trong phòng khách, hoặc trở thành dưỡng chất của loài người, hoặc biến thành thứ rượu ngọt trần gian với khả năng dẫn đến chiến tranh, sáng tạo hoặc tình huynh đệ. Rồi một ngày kia, quả táo xuất hiện trong cái nhìn đăm đăm sâu thẳm của nhà bác học Newton. Cũng chỉ là những quả táo thôi, nhưng bằng chiêm nghiệm lặp đi lặp lại của nhà bác học, quả táo lại trở thành tác nhân khơi mở một thế giới tràn trề. Ấy là, định luật về trọng trường ra đời, đặt cơ sở cho những thành tựu khoa học vĩ đại mà nhân loại phải mang ơn.

Số 0, cái không tồn tại, đem chia cho 0, nghĩa là chia đều cho cái không có gì, thì trở thành cái bất khả tri (không xác định). Tuy nhiên, khi các định nghĩa và tính chất của Giới hạn trong Giải tích học phát triển (vào thế kỉ 18), thì cái không chia không kia tùy nơi, tùy lúc mà trở thành một giá trị hữu hạn nào đó, hoặc thậm chí, là giá trị vô hạn. Hoàn toàn có lý do khi Ankur Barua, trong một tiểu luận nhan đề “Applied Buddhism in Modern Mathematics – Phật giáo ứng dụng trong toán học hiện đại” –, sau khi tham khảo một số sách về lịch sử Toán học, đã viết: “Tánh Không luận của Nāgārjuna đã mở đường cho sự phát triển những khái niệm “không” và “vô hạn” trong toán học hiện đại”.

Số 0 trong toán học, ngay ký dạng tròn của nó đã thể hiện sự tròn đầy, trong toán học, nó kết hợp với 9 chữ số kia để tạo thành hệ thống số biểu diễn tất cả các số từ tự nhiên đến hữu tỉ, nó kết hợp với chữ số 1 để mã hóa tất cả các con số và câu lệnh trong máy tính, cùng với các quy luật của hệ nhị phân, tạo nên một thời kỳ sáng chói của liên lạc viễn thông, của khoa học vũ trụ, … Nó là căn bản, mang tính trung gian, mà nếu không có nó, các định nghĩa cho những tập hợp chứa tập hợp số nguyên dương sẽ không tựu thành. Không nhà toán học nào lại có thể tưởng tượng được trong toán học ngày nay lại thiếu vắng số 0, hoặc tập rỗng.

“Nên hiểu không là nhân Tạo thành nhất thiết pháp. Còn phủ nhận tánh Không, Là phủ nhận các pháp.” Từ không, lại có thể xây dựng lại cái có. Cái rỗng không là tự tính, nhưng nó được xây dựng thành cái có chính bởi sự tương quan cùng những cái không khác. Tập rỗng, là tập hợp không chứa phần tử nào cả, nhưng lại có thể xây dựng nên cơ sở của lí thuyết tập hợp. 
 
Để xây dựng lại tập hợp các số tự nhiên từ tập hợp rỗng, vào năm 1923, nhà toán học John von Neumann đã đề nghị một phương pháp sau đây: Bản số (cardinality) của một tập hợp là số phần tử của tập hợp đó. Một tập hợp có thể có bản số bằng 0, bản số hữu hạn hoặc vô hạn đếm được hoặc vô hạn không đếm được. Theo John von Neumann, các con số, mà bản thân chúng được nhiều nhà khoa học nhìn nhận là ý niệm phi vật lý, được xây dựng lại một cách đệ quy như sau:

Số 0: Ø (tập rỗng);

Số 1: { Ø } (tập hợp chứa tập rỗng – bước xây dựng 1);

Số 2: { Ø, { Ø } } (tập hợp chứa 2 tập trước – bước xây dựng 2);

Số 3: { Ø, { Ø }, { Ø, { Ø }}} (tập hợp chứa 3 tập trước – bước xây dựng 3);

Số 4: { Ø, { Ø }, { Ø, { Ø } }, { Ø, { Ø }, { Ø, { Ø } } } } (tập hợp chứa 4 tập trước – bước xây dựng 4);…

Quá trình này được lặp lại mãi mãi. Dãy này được xây dựng làm sinh ra các tập hợp có bản số là 0, 1, 2, 3, 4, v. v…. Nếu nói theo ngôn ngữ không toán học, có thể nói: Ta bắt đầu bằng sự trống rỗng, và tư duy về sự rỗng không đó. Hãy nghĩ đến cái có thể chứa trọn vẹn sự trống rỗng đó (bước 1). Và rồi, ta kết hợp giữa sự rỗng không với cái chứa sự rỗng không (bước 2), và cứ tiếp tục như thế. Rõ ràng là, chính sự quán tưởng đã làm nảy sinh ý niệm (tức là toán tử) tác động lên cái được quán tưởng.

Về mặt toán học, dãy được xây dựng đệ quy như trên đẳng cấu với tập hợp số tự nhiên đã được thừa nhận trước đó. Sự xây dựng đó còn đi xa hơn để tạo nên các cấu trúc toán học tưởng chừng như vắng mặt cả những con số – điều mà một người bình thường không tin nổi. Quả vậy, toán học hiện đại đã xây dựng những cấu trúc, những không gian tổng quát (tất nhiên, những không gian cũ mà học sinh trung học phổ thông được dạy phải là trường hợp riêng của những không gian này), đến nỗi, nhiều nhà phân tích triết học về toán học (Philosophy of Mathematics) đã gọi nó là “Toán học không con số”, chẳng hạn, Geoffrey Hellman với tác phẩm rất hay nhan đề “Mathematics without Numbers”(Oxford University Press, 1994).

Vấn đề trên của toán học cũng gợi cho ta nhớ lại rằng, mặc dù Śūnyam xuất hiện từ trước Tây lịch khá lâu tại Ấn Độ, nhưng chính Nāgārjuna đã phát triển và biến nó thành phong phú trong khái niệm Śūnyatā, ở đó, các yếu lí lời dạy của Đức Phật được diễn bày, mà nếu hiểu được thâm lý của nó ở một mức độ tương đối khá, nhà nghiên cứu sẽ thấy được bản chất của hiện hữu, trong khoa học, và trong đời sống.

Để kết thúc những tản mạn này trong mối liên hệ giữa số không và Śūnyatā, tôi xin mượn lời của thầy Tuệ Sỹ: “Một câu hỏi được đặt ra tất có mục đích muốn mở ra một chân trời mới cho tư tưởng. Tuy nhiên, bất cứ câu hỏi nào, như Long Thụ đã nói, nếu không được thiết lập trên thuyết tánh Không, thì nó đã đóng khung sẵn cho câu trả lời, và như thế, câu trả lời thực sự không trả lời gì cả”. 

Chú thích:
Algebra with Arithmetic of Brahmagupta and Bhaskara, bản dịch Anh ngữ của Henry Thomas Colebrooke, London,
Srinivasiengar, N. The History of Ancient   Indian Mathematics, Calcutta, World Press Private Ltd, 1967.

Long Thọ. Mūlamadhyamaka-kārikā (Căn Bản Trung Quán Luận Tụng, đoạn 14, phầm 24, Quán Tứ Thánh Đế), Sonam Nyima Chân Giác, Diệu Hạnh Giao Trinh dịch từ bản Anh ngữ của Wulstan Fletcher, có tham khảo từ ngữ dùng trong bản Hán dịch.

John von Neumann (1903 –1957), nhà Toán học sống tại Mỹ, gốc Do Thái sinh tại Hungary.

Tuệ Sỹ. Triết học về Tánh Không, Chương 3, An Tiêm,

Tạp Chí Văn Hóa Phật Giáo số 161
 
Gửi ý kiến của bạn
Tắt
Telex
VNI
Tên của bạn
Email của bạn
17/04/2017(Xem: 6053)
Đa số chúng ta, ít ra đã có một lần, từng đọc qua lời tuyên bố nổi danh của nhà bác học Albert Einstein, tôi xin dịch lại cho sát ‘ý của Einstein từ Tây sang.’ “Tôn giáo của tương lai sẽ là một tôn giáo của vũ trụ. Nó cao cả hơn một thượng đế nhân tạo và loại bỏ những giáo điều và thần học. Bao gồm cả thực tại và tâm linh, nó nên được đặt trên nền tảng của một tôn giáo trí tuệ, vượt trên tất cả những kinh nghiệm của hiện tại, tự tánh và Tâm Thức, đầy ý nghĩa ‘Đồng Nhất Thể.’ Phật Giáo đáp ứng được công án này. “The religion of the future will be a cosmic religion. It would transcend a person God and avoid dogmas and theology. Covering both the natural and the spiritual, it should be based on a religious sense, arising from the experience of all things, natural and spiritual, as a meaningful unity. Buddhism answers this description.” Albert Einsteinle
23/03/2017(Xem: 11161)
Thực tại, nghĩa là nơi chốn, chỗ, vị trí, cũng có tên không gian. Không gian, nói một cách tổng thể, là bề mặt của vũ trụ từ bao la, rộng lớn, cho đến hạn hẹp đối với mỗi con người chúng ta đang có mặt ở một nơi nào đó, như tại : Núi cao, thác ghềnh, quán cà phê, phòng làm việc, phòng ngủ, phòng ăn, sân chùa,
20/03/2017(Xem: 12606)
Thức A-lại-da không phải là linh hồn. Đạo Phật bác bỏ không có linh hồn tồn tại trong một bản thể muôn loài hữu tình chúng sanh. Thức A-lại-da, là cái biết linh diệu của muôn loài, trong đó có loài người là tối thượng hơn tất cả. Cho nên Thức A-lại-da là con người thật của con người, chứ thể xác không phải là con người thật vì sau khi xác thân con người nói riêng, muôn loài chúng sanh nói chung bị chết đi, xác thịt sẽ bị bỏ lại, rồi từ từ tan rã thành đất, cát, tro, bụi bay tứ tung trong không gian, không thể mang theo qua bên kia cõi chết. Duy chỉ còn lại một mình thức A- lại-da ra đi và tồn tại trong một bản thể nào đó bên kia cõi chết.
20/03/2017(Xem: 8554)
Nhân dịp đức Phật về Thành Ca Tỳ La Vệ giáo hóa hay tin công chúa Da Du Đà La mới bảo con mình đến gặp Phật xin chia gia tài, Phật mới nói rằng ta bây giờ không còn nắm giữ tài sản thế gian, chỉ có tài sản của bậc Thánh, nếu con muốn ta sẽ chia cho con? La Hầu La nghe Phật nói liền chấp nhận và sau đó phát tâm xuất gia tu theo Phật. Các bạn biết gia tài tâm linh đó là gì không? Này các bạn, đức Phật của chúng ta trước khi đi tu vẫn có vợ có con, sau khi thành đạo dưới cội Bồ đề thấu rõ mọi nguyên lý sai biệt như phải quấy, tốt xấu, nên hư, thành bại trong cuộc đời đều do chính mình tạo lấy, sau đó Phật mới trở về tiếp chúng độ sinh. Bảy thứ gia tài Thánh nếu chúng ta biết ứng dụng vào trong đời sống hằng ngày, thì chúng ta sẽ giàu có và tràn đầy hạnh phúc, không một ai có thể cướp đi được. Đức Phật của chúng ta đã thừa hưởng gia tài đó, nên đã không còn luyến tiếc cung vàng điện ngọc, vợ đẹp con ngoan, và thần dân thiên hạ.
20/03/2017(Xem: 10022)
Sau khi nhịp đập của con tim bị ngừng lại và cùng lúc 5 giác quan của toàn thân con người không còn biết cảm giác, gọi là Chết. Nhưng thức A-lại-da bên trong vẫn còn hằng chuyển liên tục và hoạt động một mình. Sự hoạt động đơn phương của nó y như lúc con người còn sống đang ngủ say.Thức A-lại-da hoạt động một mình, không có 5 giác quan của cơ thể bên ngoài cộng tác
16/03/2017(Xem: 8770)
Trong bài “Sức Mạnh Của Tâm” kỳ trước có nói đến Tâm là chủ tể. Đích thực, con người trên đời này làm nên vô số việc tốt, xấu, học hành, nên danh, nên nghiệp, mưu sinh sống đời hạnh phúc, khổ đau, cho đến tu tập phật pháp được giác ngộ thành Phật, thành Thánh, Nhân bản, v.v…đều do tâm chỉ đạo (nhất thiết duy tâm tạo). Qua đây cho ta thấy rằng; tâm là con người thật của con người, (động vật có linh giác, giác hồn thật siêu việt hơn tất cả các loài hữu tình khác trên trái đất này). Phi tâm ra, bản thân con người, chỉ là một khối thịt bất động.
16/03/2017(Xem: 9140)
Trong nghi thức Cầu Siêu của Phật Giáo Việt Nam, ở phần Quy Y Linh, có ba lời pháp ngữ: “Hương linh quy y PHẬT, đấng PHƯỚC TRÍ VẸN TOÀN – Hương linh quy y PHÁP, đạo THOÁT LY THAM DỤC – Hương linh quy y TĂNG, bậc TU HÀNH CAO TỘT” (chơn tâm – vô ngã). Ba lời pháp ngữ trên chính là ba điều kiện, ba phương tiện siêu xuất, có năng lực đưa hương linh (thân trung ấm) được siêu lên các cõi thiện tùy theo mức độ thiện nghiệp nhiều,
13/03/2017(Xem: 6513)
Chữ NHƯ được thông dụng rất phổ biến trong văn chương và lời nói thường nghiệm của các dân tộc trên thế giới và trong Phật Giáo . Trong văn chương, chữ Như được thấy ở một số trường hợp : Xác định, phủ định, tương tợ, không thực…(như ảo, như hóa) đối với các vật thể hiện thực.
11/03/2017(Xem: 9309)
Do vì đặc thù, cho nên bảy hạng đệ tử Phật (Tỳ kheo Tăng, Tỳ kheo Ni, Sa di, Sa di ni, Thích xoa Ma na, Ưu Bà Tắt, Ưu Bà Di) từ trong thời Phật còn tại thế và hôm nay, ai cũng phải có tâm từ bi là một quy luật ắt phải có sau khi quay về Đạo Phật (Quy y tam bảo) trở thành Phật tử xuất gia. Được có tâm từ bi, là phải học và thực tập Phật Pháp. Dù là những oanh vũ nam, oanh vũ nữ trong tập thể GĐPT, đều phải học đạo lý từ bi và thực tập từ bi, được thấy ở những câu: em thương người và vật, em kính mến cha, mẹ và thuận thảo với anh chi, em.
01/02/2017(Xem: 5433)
Một số tư tưởng Phật học sau đây cùng nói lên nghĩa của Ý Giáo : Ý tưởng mong muốn đem giáo Pháp giải thoát của Phật ra, giảng dạy cho mọi người được biết mà tu tập. Tâm thông đạt mọi khế lý, giáo nghĩa Phật pháp. Tự mình làm thầy lấy mình để sửa tâm. Tự mình thắp đuốc lên mà đi. Hành giả vào đạo Phật để tìm con đường giải thoát
facebook youtube google-plus linkedin twitter blog
Nguyện đem công đức này, trang nghiêm Phật Tịnh Độ, trên đền bốn ơn nặng, dưới cứu khổ ba đường,
nếu có người thấy nghe, đều phát lòng Bồ Đề, hết một báo thân này, sinh qua cõi Cực Lạc.

May the Merit and virtue,accrued from this work, adorn the Buddhas pureland,
Repay the four great kindnesses above, andrelieve the suffering of those on the three paths below,
may those who see or hear of these efforts generates Bodhi Mind, spend their lives devoted to the Buddha Dharma,
the Land of Ultimate Bliss.

Quang Duc Buddhist Welfare Association of Victoria
Tu Viện Quảng Đức | Quang Duc Monastery
Most Venerable Thich Tam Phuong | Senior Venerable Thich Nguyen Tang
Address: Quang Duc Monastery, 105 Lynch Road, Fawkner, Vic.3060 Australia
Tel: 61.03.9357 3544 ; Fax: 61.03.9357 3600
Website: http://www.quangduc.com
http://www.tuvienquangduc.com.au (old)
Xin gửi Xin gửi bài mới và ý kiến đóng góp đến Ban Biên Tập qua địa chỉ:
[email protected]