Tu Viện Quảng Đức105 Lynch Rd, Fawkner, Vic 3060. Australia. Tel: 9357 3544. [email protected]* Viện Chủ: HT Tâm Phương, Trụ Trì: TT Nguyên Tạng   

Tản mạn về số Không

11/07/201021:53(Xem: 10741)
Tản mạn về số Không
phat_2 (11)
Có nhiều bài báo, nhiều công trình khảo cứu công phu viết về con số 0 cả từ thế kỷ trước sang đến thế kỷ này. Quả tình, đó là con số kì diệu. Có những câu hỏi tưởng chừng ngớ ngẩn, chẳng hạn, “số không có phải là con số?”, nhưng đó lại là câu hỏi gây nên những trả lời dị biệt, và ở mỗi khuynh hướng tiếp cận khác nhau, những câu trả lời khẳng hoặc phủ định đều có những hợp lý riêng của chúng. Thế nhưng, hầu như ngoài những nhà toán học thì chẳng mấy ai quan tâm đến con số không; có thể nói người ta đã không cần đến nó từ các nhu cầu bình nhật như cân đo đong đếm. 
 
Điều đó cũng tương tự như trường hợp “Tánh Không” của hiện hữu, là khái niệm khó lòng chấp nhận được đối với đại đa số, khi mà phần lớn những tầm cầu khảo sát làm nên văn minh nhân loại đã dựa vào cái có của hiện tượng. Ngay cả người Hy Lạp cổ xưa, nơi xuất phát nền văn minh phương Tây, họ vẫn không có khái niệm “số không”, mặc dù họ rất cần có một con số để chỉ sự vắng mặt của một số vật thể, hay đồ dùng nào đó.

Những khảo cứu gần đây đã chứng tỏ rằng ý niệm về số không (để diễn tả cái “không” hiện hữu) đã xuất hiện từ khá lâu trước Tây lịch, từ Ai Cập, hay từ Trung Quốc; tuy nhiên, rõ ràng nhất, là sự xuất hiện của số không với kí hiệu tròn (0) từ Ấn Độ, trong công trình của nhà toán học Ấn Độ Brahmagupta, vào năm 628 (Brahmasputha Siddhanta – Sự Khơi Mở Vũ Trụ). Còn trước đó, người ta vẫn không thể xác nhận số 0 trong nền toán học Ấn Độ xuất hiện tự khi nào, mặc dù những xác chứng của ngành khảo cổ học đã cho thấy rằng từ năm 256 trước Tây lịch, số 0 và hệ thống số thập phân đã xuất hiện trên các văn bản bằng đá thời A-dục.

Từ Śūnyam xuất hiện trong các văn bản và trong toán học Ấn Độ khá lâu trước khi ngài Long Thọ (Nāgārjuna) nêu lên thuật ngữ Śūnyatā (Tánh Không) trong luận thuyết của mình. Tùy theo lúc, Śūnyam thường được dịch sang tiếng Anh bằng các từ như Void, Vacant, Empty mà ta có thể hiểu với hai nghĩa thông thường trong Việt ngữ là “giá trị bằng không”, hoặc “không có gì”.

Từ Śūnyam đến Śūnyatā (Tánh Không), người ta đã đi qua một lộ trình dằng dặc từ chỗ nghi ngờ sự hiện hữu đến khẳng định sự tồn tại của “không”, và từ đó, mở ra những chân trời bao la của ý niệm, những chân trời chỉ có thể tiếp cận theo nhiều hướng khác nhau, nhưng không thể một lần nói hết. Ngày nay, Tánh Không luận đã nghiễm nhiên trở thành một luận thuyết đẹp và sâu đến nỗi những trí tuệ siêu việt luôn bị hấp dẫn và họ ngày càng khám phá ra biết bao huyền nhiệm trong mối tương ưng giữa luận thuyết và chiều sâu tâm hồn của những trí tuệ đó, cái chiều sâu không thể định danh, và sâu đến nỗi bất khả diễn bày. 
 
Cũng hoàn toàn tương tự như vậy, từ chỗ không có số 0, bất cần đến nó, nền văn minh Hy-La đã thực sự bị cuốn hút bởi số 0 đến từ phương Đông. Số 0 đó đã tồn tại theo nhiều kí dạng khác nhau, nhưng trải qua nhiều nghiên cứu, nó đã kết hợp với 9 chữ số từ 1 đến 9 để tạo ra một vũ trụ toán học muôn màu. Ngày nay, số 0, hoặc cái không có gì, lại không thể thiếu được cả trong Toán học thuần túy (Pure Mathematics) lẫn trong toán học ứng dụng (Applied Mathematics). Sau khi bị chinh phục bởi hệ thống số của người phương Đông, các nhà toán học phương Tây đã có đủ phương tiện để trí tưởng tượng bay bổng, các công trình lần lượt ra đời như vũ bão.

Trong tác phẩm Brahmasputha Siddhanta đã nói trên, Brahmagupta đã chỉ ra được một số tính chất đẹp mang tính cơ sở của số 0, ngoại trừ tính chất “0 chia 0 bằng 0”, là tính chất mà toán học hiện đại không đồng ý, bởi vì, “0 chia 0 thì không được xác định”. Cho đến nay, ta biết rằng, nhờ số 0, ta định nghĩa được các số nguyên âm, và từ đó, dẫn đến các tập hữu tỉ, thực, phức, nghĩa là toàn bộ các tập hợp số. 
 
Số 0 và vô tận trở thành hai khái niệm đối ngẫu, trên cơ sở, một số hữu hạn chia cho một đại lượng tiến dần đến 0 thì trở thành đại lượng tiến dần ra vô tận (âm hoặc dương).Trong một cách tiếp cận luận thuyết Tánh Không, ta biết rằng, cái không có gì lại hàm chứa cả vô biên. Quả táo rơi ư? Bằng quá nhiều nguyên nhân, mà quả táo tựu thành, bởi có những hoa táo không thành trái ngọt do không thụ phấn, hoặc bởi một cơn trở trời bất thuận, nó đành phải bay vào hư không rồi tan thành từng mảnh nhỏ, chẳng để lại dấu vết gì. Nhưng bởi sự ngẫu hợp của nhiều tác nhân, quả táo đã hình thành. 
 
Từng quả táo đã đi vào đời sống này theo nhiều thể điệu dâng tặng khác nhau, hoặc là món quà làm đẹp trong phòng khách, hoặc trở thành dưỡng chất của loài người, hoặc biến thành thứ rượu ngọt trần gian với khả năng dẫn đến chiến tranh, sáng tạo hoặc tình huynh đệ. Rồi một ngày kia, quả táo xuất hiện trong cái nhìn đăm đăm sâu thẳm của nhà bác học Newton. Cũng chỉ là những quả táo thôi, nhưng bằng chiêm nghiệm lặp đi lặp lại của nhà bác học, quả táo lại trở thành tác nhân khơi mở một thế giới tràn trề. Ấy là, định luật về trọng trường ra đời, đặt cơ sở cho những thành tựu khoa học vĩ đại mà nhân loại phải mang ơn.

Số 0, cái không tồn tại, đem chia cho 0, nghĩa là chia đều cho cái không có gì, thì trở thành cái bất khả tri (không xác định). Tuy nhiên, khi các định nghĩa và tính chất của Giới hạn trong Giải tích học phát triển (vào thế kỉ 18), thì cái không chia không kia tùy nơi, tùy lúc mà trở thành một giá trị hữu hạn nào đó, hoặc thậm chí, là giá trị vô hạn. Hoàn toàn có lý do khi Ankur Barua, trong một tiểu luận nhan đề “Applied Buddhism in Modern Mathematics – Phật giáo ứng dụng trong toán học hiện đại” –, sau khi tham khảo một số sách về lịch sử Toán học, đã viết: “Tánh Không luận của Nāgārjuna đã mở đường cho sự phát triển những khái niệm “không” và “vô hạn” trong toán học hiện đại”.

Số 0 trong toán học, ngay ký dạng tròn của nó đã thể hiện sự tròn đầy, trong toán học, nó kết hợp với 9 chữ số kia để tạo thành hệ thống số biểu diễn tất cả các số từ tự nhiên đến hữu tỉ, nó kết hợp với chữ số 1 để mã hóa tất cả các con số và câu lệnh trong máy tính, cùng với các quy luật của hệ nhị phân, tạo nên một thời kỳ sáng chói của liên lạc viễn thông, của khoa học vũ trụ, … Nó là căn bản, mang tính trung gian, mà nếu không có nó, các định nghĩa cho những tập hợp chứa tập hợp số nguyên dương sẽ không tựu thành. Không nhà toán học nào lại có thể tưởng tượng được trong toán học ngày nay lại thiếu vắng số 0, hoặc tập rỗng.

“Nên hiểu không là nhân Tạo thành nhất thiết pháp. Còn phủ nhận tánh Không, Là phủ nhận các pháp.” Từ không, lại có thể xây dựng lại cái có. Cái rỗng không là tự tính, nhưng nó được xây dựng thành cái có chính bởi sự tương quan cùng những cái không khác. Tập rỗng, là tập hợp không chứa phần tử nào cả, nhưng lại có thể xây dựng nên cơ sở của lí thuyết tập hợp. 
 
Để xây dựng lại tập hợp các số tự nhiên từ tập hợp rỗng, vào năm 1923, nhà toán học John von Neumann đã đề nghị một phương pháp sau đây: Bản số (cardinality) của một tập hợp là số phần tử của tập hợp đó. Một tập hợp có thể có bản số bằng 0, bản số hữu hạn hoặc vô hạn đếm được hoặc vô hạn không đếm được. Theo John von Neumann, các con số, mà bản thân chúng được nhiều nhà khoa học nhìn nhận là ý niệm phi vật lý, được xây dựng lại một cách đệ quy như sau:

Số 0: Ø (tập rỗng);

Số 1: { Ø } (tập hợp chứa tập rỗng – bước xây dựng 1);

Số 2: { Ø, { Ø } } (tập hợp chứa 2 tập trước – bước xây dựng 2);

Số 3: { Ø, { Ø }, { Ø, { Ø }}} (tập hợp chứa 3 tập trước – bước xây dựng 3);

Số 4: { Ø, { Ø }, { Ø, { Ø } }, { Ø, { Ø }, { Ø, { Ø } } } } (tập hợp chứa 4 tập trước – bước xây dựng 4);…

Quá trình này được lặp lại mãi mãi. Dãy này được xây dựng làm sinh ra các tập hợp có bản số là 0, 1, 2, 3, 4, v. v…. Nếu nói theo ngôn ngữ không toán học, có thể nói: Ta bắt đầu bằng sự trống rỗng, và tư duy về sự rỗng không đó. Hãy nghĩ đến cái có thể chứa trọn vẹn sự trống rỗng đó (bước 1). Và rồi, ta kết hợp giữa sự rỗng không với cái chứa sự rỗng không (bước 2), và cứ tiếp tục như thế. Rõ ràng là, chính sự quán tưởng đã làm nảy sinh ý niệm (tức là toán tử) tác động lên cái được quán tưởng.

Về mặt toán học, dãy được xây dựng đệ quy như trên đẳng cấu với tập hợp số tự nhiên đã được thừa nhận trước đó. Sự xây dựng đó còn đi xa hơn để tạo nên các cấu trúc toán học tưởng chừng như vắng mặt cả những con số – điều mà một người bình thường không tin nổi. Quả vậy, toán học hiện đại đã xây dựng những cấu trúc, những không gian tổng quát (tất nhiên, những không gian cũ mà học sinh trung học phổ thông được dạy phải là trường hợp riêng của những không gian này), đến nỗi, nhiều nhà phân tích triết học về toán học (Philosophy of Mathematics) đã gọi nó là “Toán học không con số”, chẳng hạn, Geoffrey Hellman với tác phẩm rất hay nhan đề “Mathematics without Numbers”(Oxford University Press, 1994).

Vấn đề trên của toán học cũng gợi cho ta nhớ lại rằng, mặc dù Śūnyam xuất hiện từ trước Tây lịch khá lâu tại Ấn Độ, nhưng chính Nāgārjuna đã phát triển và biến nó thành phong phú trong khái niệm Śūnyatā, ở đó, các yếu lí lời dạy của Đức Phật được diễn bày, mà nếu hiểu được thâm lý của nó ở một mức độ tương đối khá, nhà nghiên cứu sẽ thấy được bản chất của hiện hữu, trong khoa học, và trong đời sống.

Để kết thúc những tản mạn này trong mối liên hệ giữa số không và Śūnyatā, tôi xin mượn lời của thầy Tuệ Sỹ: “Một câu hỏi được đặt ra tất có mục đích muốn mở ra một chân trời mới cho tư tưởng. Tuy nhiên, bất cứ câu hỏi nào, như Long Thụ đã nói, nếu không được thiết lập trên thuyết tánh Không, thì nó đã đóng khung sẵn cho câu trả lời, và như thế, câu trả lời thực sự không trả lời gì cả”. 

Chú thích:
Algebra with Arithmetic of Brahmagupta and Bhaskara, bản dịch Anh ngữ của Henry Thomas Colebrooke, London,
Srinivasiengar, N. The History of Ancient   Indian Mathematics, Calcutta, World Press Private Ltd, 1967.

Long Thọ. Mūlamadhyamaka-kārikā (Căn Bản Trung Quán Luận Tụng, đoạn 14, phầm 24, Quán Tứ Thánh Đế), Sonam Nyima Chân Giác, Diệu Hạnh Giao Trinh dịch từ bản Anh ngữ của Wulstan Fletcher, có tham khảo từ ngữ dùng trong bản Hán dịch.

John von Neumann (1903 –1957), nhà Toán học sống tại Mỹ, gốc Do Thái sinh tại Hungary.

Tuệ Sỹ. Triết học về Tánh Không, Chương 3, An Tiêm,

Tạp Chí Văn Hóa Phật Giáo số 161
 
Gửi ý kiến của bạn
Tắt
Telex
VNI
Tên của bạn
Email của bạn
17/12/2013(Xem: 8810)
Có sự phân giới của chúng sinh và không phải chúng sinh, và việc quan tâm đến các chúng sinh cùng hành vi tinh thần trong đời sống hằng ngày của chúng ta, cũng có những trình độ khác nhau. Khi chúng ta thức giấc, khi chúng ta mơ ngủ và khi chúng ta ở trong giấc ngủ sâu và rồi thì khi chúng ta bất tỉnh - ở tại mỗi giai tầng, có một trình độ sâu hơn của tâm thức. Rồi thì cũng ngay tại thời điểm lâm chung khi tiến trình của tan biến của tâm thức tiếp tục sau khi hơi thở chấm dứt - tại thời điểm ấy, lại có một trình độ thậm chí sâu hơn của tâm thức. Chúng ta không có kinh nghiệm của những gì xảy ra tại thời điểm lâm chung, nhưng chúng ta thật sự biết những gì là kinh nghiệm thức giấc và mơ ngủ và vào lúc ngủ sâu như thế nào.
16/12/2013(Xem: 18082)
Dân tộc ta thừa hưởng nhiều tư tưởng triết lý tôn giáo cũng như chính trị và văn học của nhân loại; khởi đầu là tư tưởng Nho gia, Đạo giáo rồi đến Phật học. Suốt thời kỳ dài, "Tam giáo đồng nguyên" đã hòa hợp khá nhuần nhuyễn để dân tộc ta có một nếp sống hài hòa từ văn hóa đến kiến trúc, nghi lễ, chính trị, giáo dục, giao tế... Vì thế, những di tích còn để lại ngày nay ở các tỉnh phía Bắc và miền Trung, mỗi làng đều có Đình, Miếu và chùa trong một quần thể mỗi xã, huyện.
14/12/2013(Xem: 35108)
Năm 2006, khi tôi viết thư xin phép Thiền sư Bhante H. Gunaratana để dịch quyển tự truyện cuộc đời ngài, Hành Trình Đến Chánh Niệm (Journey To Mindfulness), Thiền sư không những đã từ bi hoan hỷ cho phép, mà còn giới thiệu về quyển sách mới của ngài, Eight Mindful Steps To Happiness. Do duyên lành đó hôm nay bản dịch của quyển sách trên được đến tay độc giả với tựa Bát Chánh Đạo: Con Đường Đến Hạnh Phúc.
11/12/2013(Xem: 22296)
Nói về kiếp người Đức Lão Tử đã thốt lên rằng: “Ngô hữu đại hoạn, vị ngô hữu thân, Ngô nhược vô thân, hà hoạn chi hữu?” Dịch : “ Ta có cái khốn khổ lớn, vì ta có thân, Nếu ta không thân thì đâu có khổ gì ?”
10/12/2013(Xem: 19303)
Cánh cửa của thế kỷ 20 sắp khép lại, tất cả chúng ta đều nhận thấy rằng thế giới đã trở nên nhỏ hơn, loài người trên hành tinh đã trở thành một cộng đồng lớn, các liên minh về chính trị và quân sự đã tạo ra những khối đa quốc gia, làn sóng của thương mại và công nghiệp thế giới đã cho ra nền kinh tế toàn cầu, những phương tiện thông tin của thế giới đã loại bỏ những chướng ngại về ngôn ngữ và chủng tộc.
10/12/2013(Xem: 24215)
Hầu hết chúng ta đều quen thuộc với câu chuyện đời của Đức Phật. Chúng ta biết rằng thái tử Siddhattha đã rời bỏ cung điện lộng lẫy của vua cha, để bắt đầu cuộc sống không nhà của người lữ hành lang thang đi tìm con đường tâm linh, và sau nhiều năm tu hành tinh tấn, Ngài đã đạt được giác ngộ khi đang nhập định dưới gốc cây bồ đề. Sau khi xả thiền, Đức Phật đã đi đến thành phố Benares, giờ được gọi là Varanasi. Ở đó, trong Vườn Nai, lần đầu tiên Ngài thuyết pháp về những gì Ngài đã khám phá về con đường đi đến hạnh phúc toàn vẹn. Lời dạy của Đức Phật rất đơn giản nhưng sâu sắc.
08/12/2013(Xem: 31749)
Khi thực tập thiền Lạy, ta nhìn sâu vào thân ta để thấy rằng thân này không đích thực là ta, không phải là vật sở hữu của ta. Trong thân này không có cái gì gọi là cái ta riêng biệt để bám víu. Tuy nhiên, thân thể ta là một hợp thể rất mầu nhiệm, nó chứa đựng cả tinh hà vũ trụ bao la. Ta thấy được tất cả các thế hệ tổ tiên, con cháu của ta đều có mặt trong thân ta. Ta cảm nhận sự có mặt của họ trong từng tế bào của cơ thể. Họ luôn có mặt trong ta và chung quanh ta. Họ cũng như các yếu tố khác đã kết hợp lại để làm nên sự sống của ta. Ta có thể tiếp xúc với những yếu tố như đất, nước, lửa và không khí - bốn đại trong ta và ngoài ta. Ta thấy ta như một con sóng trên mặt đại dương. Con sóng này được hình thành bởi các con sóng khác.
03/12/2013(Xem: 57650)
Người ta thường nói :"Ăn cơm có canh, tu hành có bạn". Đối với tôi, câu nói này thật là quá đúng. Ngày nhỏ chưa biết gì nhưng từ khi làm Huynh Trưởng Gia Đình Phật Tử tôi đã thấy ích lợi của một Tăng thân. Chúng tôi thường tập trung thành từng nhóm 5,7 người để cùng nhau tu học. Giai đoạn khó khăn nhất là sau 75 ở quê nhà. Vào khoảng 1985, 86 các anh lớn của chúng tôi muốn đưa ra một chương trình tu học cho các Huynh Trưởng trong Ban Hướng Dẫn Tỉnh và những Htr có cấp nên đã tạo ra một lớp học Phật pháp cho các Htr ở Sàigòn và các tỉnh miền Nam. Nói là "lớp học" nhưng các Chúng tự học với nhau, có gì không hiểu thì hỏi quý Thầy, các Anh và kinh sách cũng tự đi tìm lấy mà học. Theo qui định của các Anh, Sàigòn có 1 Chúng và mỗi tỉnh có 1 Chúng. Chúng tu học của chúng tôi (Sàigòn) có tên là Chúng Cổ Pháp và phải thanh toán xong các bộ kinh sau đây trong thời gian tối đa là 3 năm:
29/11/2013(Xem: 23498)
Chúng tôi chọn viết đề tài dừng tâm sanh diệt là nhân có một Phật tử than: Trong đời tu hành của con có một chướng ngại mà con không vượt qua được, đó là những niệm tưởng lăng xăng. Nó quấy rầy luôn, cả những lúc nghỉ ngơi cũng không yên.
25/11/2013(Xem: 19256)
Nhìn vào tín ngưỡng Phật giáo nhiều người thường thắc mắc tại sao lại có nhiều "thứ" đến thế! Thật vậy Phật giáo có rất nhiều học phái, tông phái, chi phái..., một số đã mai một, thế nhưng một số vẫn còn đang phát triển và đồng thời cũng có nhiều chuyển hướng mới đang được hình thành. Đối với một người tu tập Phật giáo thì sự kiện ấy thật hết sức tự nhiên: tất cả mọi hiện tượng trong thế giới đều chuyển động, sinh sôi nẩy nở và biến đổi không ngừng. Nếu nhìn vào các tín ngưỡng khác thì ta cũng sẽ thấy cùng một hiện tượng như thế.
facebook youtube google-plus linkedin twitter blog
Nguyện đem công đức này, trang nghiêm Phật Tịnh Độ, trên đền bốn ơn nặng, dưới cứu khổ ba đường,
nếu có người thấy nghe, đều phát lòng Bồ Đề, hết một báo thân này, sinh qua cõi Cực Lạc.

May the Merit and virtue,accrued from this work, adorn the Buddhas pureland,
Repay the four great kindnesses above, andrelieve the suffering of those on the three paths below,
may those who see or hear of these efforts generates Bodhi Mind, spend their lives devoted to the Buddha Dharma,
the Land of Ultimate Bliss.

Quang Duc Buddhist Welfare Association of Victoria
Tu Viện Quảng Đức | Quang Duc Monastery
Most Venerable Thich Tam Phuong | Senior Venerable Thich Nguyen Tang
Address: Quang Duc Monastery, 105 Lynch Road, Fawkner, Vic.3060 Australia
Tel: 61.03.9357 3544 ; Fax: 61.03.9357 3600
Website: http://www.quangduc.com
http://www.tuvienquangduc.com.au (old)
Xin gửi Xin gửi bài mới và ý kiến đóng góp đến Ban Biên Tập qua địa chỉ:
[email protected]